If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7q^2-5q-1=0
a = 7; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·7·(-1)
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{53}}{2*7}=\frac{5-\sqrt{53}}{14} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{53}}{2*7}=\frac{5+\sqrt{53}}{14} $
| -4u-4=2-4u-6 | | 19a+4a-15a+a=9 | | x1239319+12931932=12931331123132x+13841 | | 108=-3v-5(6+4v) | | t=43-4 | | Y=2,x= | | 3x+3=2*(4+x)+6 | | 12x-9X=4 | | 5j^2+29j-6=0 | | -2x+3-x+4x=9 | | b+3b=20 | | Y=4,x= | | R+2r=12 | | 64=4(2x+4) | | 8t^2-45t=0 | | a÷3+7=10 | | -14-7j=14 | | 5g+4g=9 | | 12n-9n=9 | | 3x-2/9+x=3x+2/3+5 | | -6-u=-1 | | a/7=1/21 | | -3v-3+7v=4v+4-5 | | 2x²-11x+24=0 | | 3x^2+39x+12=0 | | 5n+5=-10n+20 | | 7q-q=12 | | x^2-2.5=-1.5 | | 25g^2+14g=0 | | 5n+5=-10+20 | | 1/3(3x+9)=60 | | x^2-1.5=-1.5 |